6 เทรนด์เทคโนโลยีปี 2022 อยู่กับโควิด-19 แบบ Next Normal EP.2/2
ในตอนที่แล้ว Tech By True Digital พาไปทำความรู้จัก 3 เทรนด์แรกจาก 6 เทรนด์ที่ถูกคาดการณ์จาก Deloitte’s 13th annual “Tech Trends” report ว่าจะเป็นเทรนด์ของเทคโนโลยีที่องค์กรจะนำไปปรับใช้ในปี 2022 ซึ่งส่งผลอย่างมีนัยสำคัญไม่เพียงแค่แวดวงเทคโนโลยีเท่านั้นแต่ส่งผลกับธุรกิจโดยรวมในปี 2022 เพื่อให้ธุรกิจสามารถอยู่กับโควิด-19 แบบ Next Normal ได้ ใน EP. นี้จะพามาต่อกับอีก 3 เทรนด์สำคัญสุดท้าย ซึ่งเกี่ยวข้องกับการเพิ่มประสิทธิภาพ IT ทั้งสิ้น ดังนี้
Trend 4: IT, Disrupt Thyself: Automating At Scale: IT ดิสรัปต์ตัวเองเป็นระบบอัตโนมัติ
แผนกไอทีในแต่ละองค์กรอาจเคยทำหน้าที่เป็นฝ่ายสนับสนุนงาน เป็นหลังบ้านให้กับองค์กร เช่น การมอนิเตอร์และจัดเก็บข้อมูล การรับคำร้องจากหน่วยงานภายในให้ตรวจสอบหรือแก้ไขระบบ หรือแม้กระทั่งงานประเภทการลงโปรแกรม เป็นต้น แต่เมื่อต้องเผชิญกับความซับซ้อนทางเทคโนโลยีที่เพิ่มสูงขึ้นและความคาดหวังด้านความเสถียรและความพร้อมใช้งานที่มากขึ้นของระบบต่าง ๆ ในองค์กร จากนี้ไปแผนกไอทีจะผันตัวเองให้เป็นธุรกิจแห่งอนาคต และดิสรัปต์ตนเองให้กลายเป็นการทำงานแบบเชิงรุก
Deloitte ระบุว่า Chief Information Officer (CIO) ที่มีหน้าที่รับผิดชอบด้านเทคโนโลยีสารสนเทศและการสื่อสารในองค์กร จะเริ่มปรับปรุงแผนกไอที โดยดูตัวอย่างของบริษัทผู้ให้บริการระบบคลาวด์ที่แสดงให้เห็นในช่วงศตวรรษที่ผ่านมานี้ว่า การนำระบบอัตโนมัติมาใช้ในงานนั้น สามารถลดงานซ้ำซ้อน งานที่ทำซ้ำ ๆ ในปริมาณมาก ทั้งยังช่วยให้งานมีประสิทธิภาพมากขึ้น ลดข้อผิดพลาดและยังปรับปรุงคุณภาพได้ตลอดเวลา โดยขณะที่คนก็สามารถโยกย้ายไปทำงานด้านอื่นหรืองานที่ต้องใช้ทักษะสูงกว่างานประจำอย่างที่เคยทำมา
ระบบ IT แบบใหม่ที่มีประสิทธิภาพ มีความเสถียร คล่องตัว และรวดเร็วนั้น จะเกิดจากการผสมผสานทั้งด้านวิศวกรรม ระบบอัตโนมัติและการบริการตนเอง โดยจะเป็นการใช้ Software และ Hardware ควบคู่กันไป มีการนำระบบใหม่เข้ามาร่วมทำงานมากขึ้น ซึ่งล้วนเป็นเทรนด์ที่กล่าวมาก่อนหน้านี้ไม่ว่าจะเป็น Cloud, Blockchain, Machine Learning และระบบอัตโนมัติ เพื่อจัดการระบบที่ซับซ้อนได้อย่างมีประสิทธิภาพมากขึ้น และสามารถปรับปรุงประสบการณ์โดยรวมของทั้งลูกค้าภายในและภายนอกองค์กรในการใช้บริการ โดยลดการทำงานแบบ Physical ลงเพื่อการประมวลผลที่แม่นยำมากขึ้น แต่ยังต้องคงความปลอดภัยและน่าเชื่อถือ และที่สำคัญต้องยืดหยุ่นที่จะเป็นระบบที่เข้าถึงง่าย ไม่ซับซ้อน
ตัวอย่าง UiPath ปูทางสู่ความสำเร็จของระบบอัตโนมัติด้านไอที
UiPath เป็นบริษัทผู้พัฒนาและให้บริการแพลตฟอร์ม Robotic Process Automation (RPA) หรือระบบอัตโนมัติของกระบวนการหุ่นยนต์ มาตั้งแต่ปี 2005 โดย UiPath ได้เปลี่ยนความเชี่ยวชาญด้านระบบอัตโนมัติของตนเองไปสู่ธุรกิจไอทีโดยจับทางการนำระบบอัตโนมัติไปใช้ในแผนกไอทีขององค์กรที่ตนเองดูแล ทำให้ทีมงานไม่เพียงแค่สามารถควบคุมแพลตฟอร์มการทำงานระบบอัตโนมัติเท่านั้น แต่ยังสามารถปรับกระบวนการทำงานไอทีภายในให้เป็นระบบอัตโนมัติได้อีกด้วย อาทิ การรับคำร้องจากหน่วยงานภายใน การลงโปรแกรม หรือการตอบสนองต่อความเสี่ยงด้านไซเบอร์ เป็นต้น นอกจากนี้ UiPath ยังทำงานร่วมกับแผนกไอทีเพื่อสร้าง IT Playbook ที่รวบรวมกรณีศึกษา วิธีการจัดลำดับความสำคัญของงาน ทั้งจากปริมาณงานสูงสุดและมูลค่างานที่มีมูลค่าต่ำที่สุด และยังสร้างภาพลักษณ์ของไอทีที่เป็นผู้นำด้านนวัตกรรมให้กับองค์กรหรือแบรนด์นั้น ๆ เช่น ให้ผู้ดูแลระบบหรือแอดมิน สอนวิธีการใช้แพลตฟอร์ม RPA ของตนในการทำงานข้ามแผนกหรือในงานที่มีกระบวนการที่แตกต่างกันให้สำเร็จ เช่นเดียวกับที่พนักงานไอทีคนหนึ่งสามารถทำได้
การให้ระบบอัตโนมัติทำงานไอทีในลักษณะนี้ ทำให้พนักงานไอทีขององค์กรสามารถมุ่งเน้นไปที่การทำงานที่มีมูลค่าสูงขึ้น หรือสามารถออกแบบระบบการทำงานอัตโนมัติเพิ่มเติม ซึ่งผลที่ตามมา คือการมีวงจรอัตโนมัติที่เติบโตอย่างต่อเนื่องภายในแผนกไอที พนักงานพร้อมใจสร้างสรรค์แนวคิดเกี่ยวกับระบบอัตโนมัติมากขึ้น หุ่นยนต์ถูกรวมเข้าเป็นส่วนหนึ่งของกระบวนการไอที นอกจากนี้ ทั้ง AI และ Machine Learning ในแพลตฟอร์มจะวิเคราะห์การทำงานอัตโนมัติและสามารถแนะนำการปรับปรุงในจุดที่สามารถยกระดับการทำงานขององค์กรได้ โดย UiPath มองว่าเป้าหมายที่แท้จริงคือการสร้างระบบอัตโนมัติแบบ End-to-End ที่จะขับเคลื่อนการเปลี่ยนแปลงทางดิจิทัลและธุรกิจในที่สุด
Trend 5: Cyber AI: Real Defense: การป้องกันการโจมตีทางไซเบอร์ที่แท้จริง
แม้จะมีการลงทุนจำนวนมากเกี่ยวกับเทคโนโลยีความปลอดภัย แต่องค์กรก็ยังต้องเผชิญหน้ากับการโจมตีทางไซเบอร์ เพราะอาชญากรทางไซเบอร์ทุกวันนี้มีการพัฒนากลยุทธ์ที่รวดเร็วและนำหน้าเทคโนโลยีอยู่เสมอ ในขณะที่หน่วยงาน Cybersecurity ในองค์กรกลับเผชิญกับปริมาณงานที่ล้นมือ ทั้งยังมีความซับซ้อนและความยากลำบากในการตรวจจับการโจมตีทางไซเบอร์ ประกอบกับช่องทางที่สามารถถูกโจมตีได้ขององค์กรนั้นกำลังขยายตัวแบบทวีคูณ ทั้งจากการใช้งาน 5G ที่เติบโตขึ้นพร้อม ๆ กับจำนวนอุปกรณ์ที่มีการเชื่อมต่อกับเครือข่าย การทำงานแบบ Remote Working ที่เปิดช่องให้ผู้โจมตีเจาะเข้าสู่ระบบปฏิบัติการขององค์กรได้ทั้งทางตรงและทางอ้อม เป็นต้น
ในขณะที่มูลค่าความเสียหายจากอาชญากรรมทางไซเบอร์ยังเพิ่มขึ้นอย่างต่อเนื่อง มีการคาดการณ์ว่าจะเพิ่มเป็นสองเท่า จาก 3 ล้านล้านดอลลาร์สหรัฐ ในปี 2015 เป็น 6 ล้านล้านดอลลาร์สหรัฐภายในสิ้นปี 2021 นี้ และจะเพิ่มเป็น 10.5 ล้านล้านดอลลาร์สหรัฐภายในปี 2025 ในขณะที่ AIG ได้ให้ข้อมูลที่น่าสนใจไว้ว่า ตั้งแต่ปี 2018 เฉพาะการโจมตีระบบฐานข้อมูลขององค์กรด้วยแรนซัมแวร์ (Ransomware) เพื่อเรียกค่าไถ่ข้อมูลนั้นมีอัตราการเติบโตสูงถึง 150%
Deloitte มองว่าการป้องกันการโจมตีทางไซเบอร์ที่แท้จริงนั้นคือการใช้ Cyber AI ที่สามารถเป็นตัวช่วยชั้นดีให้องค์กร ที่ไม่เพียงแค่ตอบสนองได้เร็วกว่าการเคลื่อนไหวของผู้โจมตีเท่านั้น แต่ยังสามารถคาดการณ์การเคลื่อนไหวเหล่านี้ และเตรียมการตอบสนองต่ออาชญากรไซเบอร์ล่วงหน้าได้อีกด้วย จากความสามารถของ AI ในการเรียนรู้และการตรวจจับรูปแบบใหม่ ๆ เช่น การเร่งกระบวนการวิเคราะห์ข้อมูล ระบุความผิดปกติ และตรวจจับภัยคุกคามทางไซเบอร์ ซึ่งช่วยลดภาระของนักวิเคราะห์ศูนย์ปฏิบัติการความปลอดภัย (SOC) ให้สามารถนำเวลาไปพัฒนารูปแบบการรักษาความปลอดภัยในเชิงรุกและยืดหยุ่นมากขึ้น นอกจากนี้ Cyber AI ยังสามารถช่วยให้องค์กรพร้อมรับมือการโจมตีทางไซเบอร์ที่ขับเคลื่อนด้วย AI ได้อีกด้วย
อย่างไรก็ตาม เทคโนโลยี Cyber AI นั้นยังอยู่ในช่วงเริ่มต้นของการนำไปใช้ แต่ก็มีการคาดการณ์ว่าจะสามารถเติบโตถึง 19,000 ล้านดอลลาร์สหรัฐระหว่างปี 2021 ถึง 2025
ตัวอย่าง Sapper Labs fights software with software
Sapper Labs Cyber Solutions ใช้ AI เป็นเครื่องมือสำคัญในการติดตั้งระบบ Cybersecurity ให้กับกองทัพแคนาดาและสหรัฐอเมริกา โดยเริ่มต้นจากข้อจำกัดประการสำคัญคือ การขาดทรัพยากรบุคคลด้านความปลอดภัยทางไซเบอร์ จึงมีการนำ AI เข้ามาใช้ในงานส่วนนี้แทน
Sapper Labs ทำงานร่วมกับองค์กรด้านความปลอดภัย การป้องกันประเทศและหน่วยข่าวกรองของแคนาดาและสหรัฐอเมริกาเพื่อสร้างระบบ AI ที่มีจุดมุ่งหมายเพื่อการตอบสนองแบบเรียลไทม์ด้วยกลยุทธ์ ต่อภัยคุกคาม โดยเป็นระบบ AI ที่ทำได้มากกว่าการแจ้งข้อมูลเพื่อรอการตัดสินใจ แต่สามารถเรียนรู้วิธีป้องกันตนเองโดยไม่ต้องรอการตัดสินใจจากมนุษย์อย่างในระบบ Cybersecurity ปัจจุบัน
Sapper Labs เห็นว่าการต่อสู้กับภัยคุกคามสำหรับองค์กรนั้นควรเปลี่ยนไปใช้วิธีการที่นำโดย Software ดังเช่นที่ Sapper Labs ร่วมกับหน่วยงานรัฐบาลในการพัฒนาระบบตรวจจับภัยคุกคามแบบหลายชั้น ที่รวบรวมข้อมูลจากแหล่งที่มาต่าง ๆ เช่น โซเชียลมีเดีย ข้อมูลเครือข่ายสาธารณะและเอกชน ซึ่งการตรวจสอบข้อมูลนี้ ในลักษณะดั้งเดิมอาจใช้เวลาหลายเดือนหรือหลายปีโดยทีมรักษาความปลอดภัยที่ทำโดยคน แต่สำหรับการทำให้กระบวนการสังเคราะห์ข้อมูลเป็นไปโดยระบบอัตโนมัติ และใช้อัลกอริธึมในระบบ AI นี้ ช่วยให้การประเมินและการตัดสินใจเกิดขึ้นได้เร็วกว่าวิธีการเดิมถึง 10 ถึง 15 เท่า Sapper Labs ยังมองว่า Cyber AI และเทคโนโลยีระบบอัตโนมัติจะก้าวหน้าจนถึงขั้นที่สามารถประเมินข่าวกรอง บรรลุข้อสรุป และตัดสินใจได้เร็วกว่าในอดีตถึง 50 เท่า
อย่างไรก็ตาม ความท้าทายของ Cyber AI ในเวลานี้ไม่ใช่การเอาชนะปัญหาทางเทคโนโลยี หากเป็นการเอาชนะคน สังคม และวัฒนธรรม ที่ยังไม่เชื่อมั่นในการตัดสินใจของ AI เท่ากับการตัดสินใจของคนที่ใช้เวลานานกว่าถึง 50 เท่า ซึ่ง Sapper Labs กำลังร่วมมือกับบริษัทเอกชน องค์กรภาครัฐ และสถาบันการศึกษา เพื่อสร้างความตระหนักรู้ในวงกว้างเกี่ยวกับความปลอดภัยทางไซเบอร์ด้วยระบบอัตโนมัติให้มากขึ้น
Trend 6: The Tech Stack Goes Physical: Tech Stack อยู่บนอุปกรณ์ที่จับต้องได้
เพราะความหลากหลายของ Tech Stack ในปัจจุบัน ไม่ว่าจะเป็น การประมวลผลขั้นสูง หุ่นยนต์ที่ใช้ในระดับอุตสาหกรรม และ Machine Learning จึงทำให้เทคโนโลยีที่เกิดขึ้นต่อจากนี้จะจับต้องได้มากขึ้น และมาในรูปแบบของอุปกรณ์อัจฉริยะหรือ Smart Devices ที่สามารถเชื่อมต่อ บันทึกข้อมูลและสร้างวงจรของการประมวลผล โต้ตอบกลับอย่างมีประสิทธิภาพมากขึ้น
Tech Stack ที่ใช้เพื่อขับเคลื่อนนวัตกรรมต่าง ๆ จึงเป็นมากกว่าการอยู่ในโลกดิจิทัลหรืออยู่ในรูปแบบ Software แต่จะย้ายเข้ามาอยู่บนตัวอุปกรณ์ที่จับต้องได้มากขึ้น โดยอุปกรณ์อัจฉริยะจะไปไกลกว่าการเป็นคอมพิวเตอร์พกพาหรือโทรศัพท์ แต่จะได้เห็นในรูปแบบที่หลากหลาย อาทิ อุปกรณ์ในโรงงานอัจฉริยะ หุ่นยนต์ทำอาหารอัตโนมัติ เครื่องตรวจสุขภาพที่มาในรูปแบบ Wearable Device เครื่องวัดการเต้นของหัวใจพกพาได้ที่เชื่อมต่อกับโรงพยาบาล โดรนตรวจสอบสำหรับโครงสร้างพื้นฐาน หม้อหุงข้าวหุ่นยนต์ในร้านอาหาร ไปจนถึงเซ็นเซอร์อัจฉริยะในอาคารสำนักงาน และอื่น ๆ อีกนับไม่ถ้วน
Deloitte มองว่า เทคโนโลยีกำลังพัฒนาจากการเป็นตัวขับเคลื่อนธุรกิจไปสู่การขับเคลื่อนเพื่อคุณค่า และจะกลายเป็นหัวใจหลักขององค์กรในการดำเนินธุรกิจ ดังนั้น การมาของ Tech Stack ที่ฝังอยู่ในอุปกรณ์อัจฉริยะจะทำให้องค์กรต้องเลือกเทคโนโลยีที่จะเข้ามาจัดการอุปกรณ์เหล่านี้อย่างชาญฉลาด เพราะ Tech Stack ที่จับต้องได้นี้จะส่งผลถึงการที่องค์กรต้องพิจารณาจ้างงานแรงงานที่มีความสามารถด้านเทคโนโลยีที่จำเป็น และการปรับทักษะให้กับพนักงานปัจจุบันอีกด้วย
ตัวอย่าง การใช้โดรนเพื่อตรวจสอบโครงสร้างพื้นฐานทางไฟฟ้า
Southern California Edison (SCE) เป็นผู้บุกเบิกการใช้โดรนเพื่อตรวจสอบโครงสร้างพื้นฐานด้านไฟฟ้า ที่ครอบคลุมการตรวจสอบความสมบูรณ์ของเสาไฟ สายไฟ หม้อแปลงไฟฟ้าและโครงสร้างการจ่ายและส่งสัญญาณอื่น ๆ การใช้โดรนแทนเฮลิคอปเตอร์นั้นมีความปลอดภัยและน้ำหนักเบากว่า ทั้งยังคล่องตัวและคุ้มค่า ทำให้ทีมงานของ SCE สามารถตรวจสอบและรวบรวมข้อมูลได้รวดเร็วและแม่นยำ เพราะโดรนสามารถเข้าใกล้โครงสร้างได้มากขึ้น และจับภาพได้จากหลายมุม
พื้นที่ให้บริการของ SCE นั้นอยู่ที่กว่า 130,000 ตารางกิโลเมตร ประกอบด้วยเสากระจายสัญญาณประมาณ 1,400,000 เสา และโครงสร้างเสาส่งสัญญาณกว่า 140,000 โครงสร้าง ในการตรวจสอบแต่ละครั้งจะต้องใช้รูปภาพ 10 ถึง 12 ภาพของแต่ละโครงสร้าง การตรวจสอบเสาส่งสัญญาณขนาดใหญ่ต้องจับภาพได้ระหว่าง 400 ถึง 600 ภาพ ปริมาณภาพที่ได้และถูกส่งเข้าสู่โปรแกรมการตรวจสอบอย่างมหาศาลเป็นปัญหาคอขวดให้คนทำงาน จึงทำให้ SCE พัฒนาและฝึกแบบจำลอง AI เพื่อระบุข้อบกพร่องหรือความเสียหายในเสาส่งสัญญาณ ฉนวน และหม้อแปลงไฟฟ้า ตลอดจนโครงสร้างอื่น ๆ จากภาพถ่าย
โดยการป้อนแบบจำลองด้วยภาพถ่ายนับพันภาพ เพื่อให้สามารถระบุโครงสร้างที่ต้องการการแก้ไขได้โดยอัตโนมัติ รูปภาพจะถูกเก็บไว้ในคลาวด์และประเมินผลในภาคสนามบนแท็บเล็ต เที่ยวบินของโดรนสามารถตั้งโปรแกรมล่วงหน้าได้โดยใช้พิกัด GPS ทำให้ผู้ตรวจสอบสามารถโฟกัสไปที่การประเมินภาพได้ทันที เมื่อตัวแบบผ่านการประเมินภาพการตรวจสอบครั้งแรก ระบบจะแจ้งให้ผู้ตรวจสอบที่เป็นคนทำงานทราบเมื่อตรวจพบความผิดปกติ ทำให้แทนที่จะตรวจสอบภาพหลายล้านภาพ ผู้ตรวจสอบก็สามารถจัดลำดับความสำคัญของภาพที่ได้รับการระบุว่ามีข้อบกพร่องหรือมีโอกาสเกิดข้อบกพร่อง ทำให้ทีมสามารถค้นหาและแก้ไขโครงสร้างเหล่านั้นได้เร็วยิ่งขึ้น
และนี่คือ 3 เทรนด์เทคโนโลยีสุดท้ายจากทั้งหมด 6 เทรนด์ของปี 2022 ที่ Deloitte’s 13th annual “Tech Trends” report คาดการณ์ไว้ว่าจะส่งผลอย่างมีนัยสำคัญกับทุกอุตสากรรม หากธุรกิจนำไปปรับใช้อย่างเหมาะสมแล้วก็คือการรับมือแบบมองไปข้างหน้าอย่าง Next Normal นั่นเอง
อ่านบทความ 6 เทรนด์เทคโนโลยีปี 2022 อยู่กับโควิด-19 แบบ Next Normal EP.1/2 ได้ที่ https://bit.ly/3evExf9
#เทรนด์เทคโนโลยี
อ้างอิง:
Comments